常用导数公式
\[
\begin{array}{lllll}
\text{三角} & (\tan x)^{\prime} = \sec^2 x & (\cot x)^{\prime} = - \csc^2 x & & \\
& (\sec x)^{\prime} = \sec x \tan x& (\csc x)^{\prime} = - \csc x \cot x & & \\
&(\sin x)^{(n)} = \sin \left( x + \frac{n\pi}{2} \right)&(\cos x)^{(n)} = \cos \left( x + \frac{n\pi}{2} \right)&&\\
\text{反三角} &
(\arcsin x)^{\prime} = \frac{1}{\sqrt{1 - x^2}}&
(\arccos x)^{\prime} = - \frac{1}{\sqrt{1 - x^2}}& & \\
& (\arctan x)^{\prime} = \frac{1}{1 + x^2}&
(\text{arccot} x)^{\prime} = - \frac{1}{1+x^2} & & \\
\text{对数三角}&
(\ln |\cos x|)^{\prime} = -\tan x&
(\ln |\sin x|)^{\prime} = \cot x& & \\
& (\ln |\sec x + \tan x|)^{\prime} = \sec x&
(\ln |\csc x - \cot x|)^{\prime} = \csc x & & \\
\text{对数根式} &
(\ln (x + \sqrt{x^2 + a^2}))^{\prime} = \frac{1}{\sqrt{x^2 + a^2}}&
(\ln ( x- \sqrt{x^2 + a^2}))^{\prime} = - \frac{1}{\sqrt{x^2 + a^2}}& & \\
& (\ln (x + \sqrt{x^2 - a^2}))^{\prime} = \frac{1}{\sqrt{x^2 - a^2}}&
(\ln (x - \sqrt{x^2 - a^2}))^{\prime} = - \frac{1}{\sqrt{x^2 - a^2}} & &
\end{array}
\]