指数复合函数求导
命题(指数复合函数求导)
对于 \(y = u(x)^{v(x)}\) ,可以两侧取对数得到 \(\ln y = v(x) \ln u(x)\),从而求导得到
\[ \begin{align} \frac{y^{\prime}}{y} = v^{\prime}(x)\ln u(x) + v(x) \frac{u^{\prime}(x)}{u(x)} \end{align}\]得到 \(\displaystyle y^{\prime} = u(x)^{v(x)} \left[ v^{\prime}(x)\ln u(x) + v(x) \frac{u^{\prime}(x)}{u(x)} \right]\)。
例. 求以下函数的导数:(1) \({\displaystyle x^{\frac{1}{x}}}\) (2)\({\displaystyle x^x}\) (3)\({\displaystyle x^{x^x}}\)
解:(1) 设 \(y = x^{\frac{1}{x}}\),两侧取对数得到 \(\ln y = \frac{\ln x}{x}\),因此两侧求导得到
\[ \frac{y^{\prime}}{y} = \frac{1 - \ln x}{x^2} \]即 \(\displaystyle y^{\prime} = x^{\frac{1}{x}} \frac{1 - \ln x}{x^2}\)