Skip to content

Class EDMDDLSolver

The class EDMDDLSolver implements the EDMD-DL algorithm. It's a subclass of EDMDSolver.

API Documentation

Bases: EDMDSolver

__init__(dictionary, reg, reg_final=0.01)

Initialize the EDMDDLSolver instance.

Parameters:

Name Type Description Default
dictionary TrainableDictionary

The dictionary used in the algorithm.

required
reg float

The regularization parameter used in the algorithm.

required
reg_final float

The final regularization parameter used in the algorithm.

0.01

solve(dataset_train, dataset_val, n_epochs, batch_size, tol=1e-08, lr=0.0001)

Solves the Koopman operator learning problem using the provided training and validation datasets.

Parameters:

Name Type Description Default
dataset_train KoopmanDataset

The training dataset containing input data and labels.

required
dataset_val KoopmanDataset

The validation dataset containing input data and labels.

required
n_epochs int

The number of epochs to train the model.

required
batch_size int

The size of each batch for training and validation.

required
tol float

The tolerance for early stopping based on training loss. Defaults to 1e-8.

1e-08
lr float

The learning rate for the optimizer. Defaults to 1e-4.

0.0001

Returns:

Type Description
Koopman

The learned Koopman operator.