Class ParamKoopman
It represents a mapping \(K: \mathrm{span}(\Psi) \times U \rightarrow \mathrm{span}(\Psi)\), which is a finite-dimensional approximation of the parametric Koopman operator.
Attributes¶
_network
(torch.nn.Module): The neural network that approximates the parametric Koopman operator. Given the parametersu
, returns the generated Koopman operator matrix._size
(int): The size of the Koopman operator matrix.
Methods¶
__init__(self, size_K, network)
__call__(self, para, x)
: Applies the parametric Koopman operator on(x, para)
, which should satisfy \(x \in \mathbb{R}^{N \times N_{\psi}}\), \(\text{para} \in \mathbb{R}^{N \times N_u}\).parameters(self)
: Returns the parameters of the neural network.predict(self, para, x0, dictionary, dim_nontrain, traj_len)
: Predicts the trajectory of the system given the initial statex0
, the dictionarydictionary
, and the parameterspara
.para
(tensor): The parameters of the system.x0
(tensor): The initial state of the system.dictionary
(Dictionary): The dictionary used to represent the state of the system.dim_nontrain
(int): The dimension of the non-trainable part of the state.traj_len
(int): The length of the trajectory to predict.