Skip to content

Class ParamKoopmanDataSet

The class ParamKoopmanDataSet is a subclass of KoopmanDataSet, it provides data for ParamKoopmanDLSolver.

API Documentation

Bases: KoopmanDataSet

data_param property

Returns the parameters of the generated data.

Returns:

Type Description
Tensor

The parameters of the generated data.

__getitem__(idx)

Retrieve the data and labels at the specified index.

Parameters:

Name Type Description Default
idx int

The index of the data to retrieve.

required

Returns:

Type Description
tuple

A tuple containing the data, parameters, and labels at the specified index.

__init__(dynamics, x_sample_func=torch.rand, param_sample_func=torch.rand)

Initializes the KoopmanDataSet class with the specified dynamics and sampling functions.

Parameters:

Name Type Description Default
dynamics DiscreteDynamics

The dynamics function or model to be used in the dataset.

required
x_sample_func callable

A function to sample the initial state x. Defaults to torch.rand.

rand
param_sample_func callable

A function to sample the parameters. Defaults to torch.rand.

rand

generate_data(n_traj, n_traj_per_param, traj_len, x_min, x_max, param_min, param_max, seed_x=11, seed_param=22, param_time_dependent=False)

Generates synthetic data for the ParamKoopmanDataSet.

Parameters:

Name Type Description Default
n_traj int

Number of trajectories to generate.

required
n_traj_per_param int

Number of trajectories per parameter setting.

required
traj_len int

Length of each trajectory.

required
x_min float or Tensor

Minimum value for initial state sampling.

required
x_max float or Tensor

Maximum value for initial state sampling.

required
param_min float or Tensor

Minimum value for parameter sampling.

required
param_max float or Tensor

Maximum value for parameter sampling.

required
seed_x int

Random seed for initial state sampling. Default is 11.

11
seed_param int

Random seed for parameter sampling. Default is 22.

22
param_time_dependent bool

If True, parameters are time-dependent. Default is False.

False

Returns: None: The generated data is stored in the instance variables _data_x, _data_param, and _labels.

load(file)

Load data from a pickle file and set the object's attributes.

Parameters:

Name Type Description Default
file str

The path to the pickle file to be loaded.

required

save(file)

Saves the generated dataset to a file.

Parameters:

Name Type Description Default
file str

The path to the file where the dataset will be saved.

required