Input Guide
We explain in detail the parameters listed in the JSON files in example/simple examples.
General Parameters¶
equ_type (string): Indicates the type of equation. This type must be registered in theODEFACTORY, see Customize ODE for more details.ode_solver:type (string): Indicates the type of ODE solver. This type must be registered in theODESOLVERFACTORY, see Customize ODE Solver for more details.dt (float): Time step \(k\) of the ODE Solver.t_step (float): Time step of the trajectories.
dataset:n_traj (int): Number of trajectories.traj_len (int): Length of each trajectory.x_min/x_max (float or list): Range of the states. If afloatis given, it means every state has the same range.seed_x (int): Seed for generating the states.
dictionary:dim_output (int): Output dimension \(N_{\Psi}\) of the dictionary.
EDMD-RBF Algorithm¶
dataset:param (list): Fixed parameters \(u\) of the dataset.
dictionary:reg (float): Regularization parameter \(\lambda\) for generating the RBF functions.
EDMDDL Algorithm¶
dataset:param (list): Fixed parameters \(u\) of the dataset.train_ratio (float): Ratio of the training set.
dictionarydic_layer_sizes (list): Hidden layer sizes of the dictionary.
solver:reg (float): Regularization parameter \(\lambda\) when training the Koopman operator.reg_final (float): Regularization parameter \(\lambda\) when outputting the Koopman operator.n_epochs (int): Number of training epochs.batch_size (int): Batch size for training.tol (float): Tolerance of training.dic_lr (float): Learning rate for training the dictionary.
Parametric Koopman Learning¶
datasetn_traj_per_param (int): Number of trajectories per parameter setting.param_min/param_max (list): Range of the parameters.seed_param (int): Seed for generating the parameters.param_time_dependent (bool): Indicates whether the parameters are time-dependent.
dictionary:dic_layer_sizes (list): Hidden layer sizes of the dictionary.
solver:n_epochs (int): Number of training epochs.batch_size (int): Batch size for training.tol (float): Tolerance of training.dic_lr (float): Learning rate for training the dictionary.koopman_layer_sizes (list): Hidden layer sizes for the Koopman operator.koopman_lr (float): Learning rate for training the Koopman operator.