Input Guide
We explain in detail the parameters listed in the JSON files in example/simple examples
.
General Parameters¶
equ_type (string)
: Indicates the type of equation. This type must be registered in theODEFACTORY
, see Customize ODE for more details.ode_solver
:type (string)
: Indicates the type of ODE solver. This type must be registered in theODESOLVERFACTORY
, see Customize ODE Solver for more details.dt (float)
: Time step \(k\) of the ODE Solver.t_step (float)
: Time step of the trajectories.
dataset
:n_traj (int)
: Number of trajectories.traj_len (int)
: Length of each trajectory.x_min/x_max (float or list)
: Range of the states. If afloat
is given, it means every state has the same range.seed_x (int)
: Seed for generating the states.
dictionary
:dim_output (int)
: Output dimension \(N_{\Psi}\) of the dictionary.
EDMD-RBF Algorithm¶
dataset
:param (list)
: Fixed parameters \(u\) of the dataset.
dictionary
:reg (float)
: Regularization parameter \(\lambda\) for generating the RBF functions.
EDMDDL Algorithm¶
dataset
:param (list)
: Fixed parameters \(u\) of the dataset.train_ratio (float)
: Ratio of the training set.
dictionary
dic_layer_sizes (list)
: Hidden layer sizes of the dictionary.
solver
:reg (float)
: Regularization parameter \(\lambda\) when training the Koopman operator.reg_final (float)
: Regularization parameter \(\lambda\) when outputting the Koopman operator.n_epochs (int)
: Number of training epochs.batch_size (int)
: Batch size for training.tol (float)
: Tolerance of training.dic_lr (float)
: Learning rate for training the dictionary.
Parametric Koopman Learning¶
dataset
n_traj_per_param (int)
: Number of trajectories per parameter setting.param_min/param_max (list)
: Range of the parameters.seed_param (int)
: Seed for generating the parameters.param_time_dependent (bool)
: Indicates whether the parameters are time-dependent.
dictionary
:dic_layer_sizes (list)
: Hidden layer sizes of the dictionary.
solver
:n_epochs (int)
: Number of training epochs.batch_size (int)
: Batch size for training.tol (float)
: Tolerance of training.dic_lr (float)
: Learning rate for training the dictionary.koopman_layer_sizes (list)
: Hidden layer sizes for the Koopman operator.koopman_lr (float)
: Learning rate for training the Koopman operator.